New Relative Perturbation Bounds for Ldu Factorizations of Diagonally Dominant Matrices

نویسندگان

  • MEGAN DAILEY
  • FROILÁN M. DOPICO
  • QIANG YE
چکیده

This work introduces new relative perturbation bounds for the LDU factorization of (row) diagonally dominant matrices under structure-preserving componentwise perturbations. These bounds establish that if (row) diagonally dominant matrices are parameterized via their diagonally dominant parts and off-diagonal entries, then tiny relative componentwise perturbations of these parameters produce tiny relative normwise variations of the L and U factors and tiny relative entrywise variations of the factor D. These results improve previous bounds in an essential way, by including LDU factorizations computed via the column diagonal dominance pivoting strategy. This strategy is specific for (row) diagonally dominant matrices and has the key advantage of yielding L and U factors which are guaranteed to be well-conditioned and, so, the corresponding LDU factorization is guaranteed to be a rank-revealing decomposition. Since rank-revealing decompositions play a fundamental role in highly accurate matrix computations, the results presented in this paper have some important implications, because they will allow us to prove rigorously in a follow-up work that most of the standard tasks in numerical linear algebra can be performed with guaranteed high accuracy for the relevant class of diagonally dominant matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Perturbation Bound for the LDU Factorization of Diagonally Dominant Matrices

This work introduces a new perturbation bound for the L factor of the LDU factorization of (row) diagonally dominant matrices computed via the column diagonal dominance pivoting strategy. This strategy yields L and U factors which are always well-conditioned and, so, the LDU factorization is guaranteed to be a rank-revealing decomposition. The new bound together with those for the D and U facto...

متن کامل

Relative Perturbation Theory for Diagonally Dominant Matrices

OF DISSERTATION RELATIVE PERTURBATION THEORY FOR DIAGONALLY DOMINANT MATRICES Diagonally dominant matrices arise in many applications. In this work, we exploit the structure of diagonally dominant matrices to provide sharp entrywise relative perturbation bounds. We first generalize the results of Dopico and Koev to provide relative perturbation bounds for the LDU factorization with a well condi...

متن کامل

Perturbation theory for the LDU factorization and accurate computations for diagonally dominant matrices

We present a structured perturbation theory for the LDU factorization of (row) diagonally dominant matrices and we use this theory to prove that a recent algorithm of Ye (Math Comp 77(264):2195–2230, 2008) computes the L , D andU factors of these matrices with relative errors less than 14n3u, where u is the unit roundoff and n × n is the size of the matrix. The relative errors for D are compone...

متن کامل

Ela Accurate and Efficient Ldu Decompositions of Diagonally Dominant M-matrices

An efficient method for the computation to high relative accuracy of the LDU decomposition of an n × n row diagonally dominant M–matrix is presented, assuming that the off–diagonal entries and row sums are given. This method costs an additional O(n) elementary operations over the cost of Gaussian elimination, and leads to a lower triangular, column diagonally dominant matrix and an upper triang...

متن کامل

Relative Perturbation Bounds for Eigenvalues of Symmetric Positive Definite Diagonally Dominant Matrices

For a symmetric positive semi-definite diagonally dominant matrix, if its off-diagonal entries and its diagonally dominant parts for all rows (which are defined for a row as the diagonal entry subtracted by the sum of absolute values of off-diagonal entries in that row) are known to a certain relative accuracy, we show that its eigenvalues are known to the same relative accuracy. Specifically, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013